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Abstract
Effective dielectric responses of graded cylindrical composites are investigated
when an external uniform field is applied to the composites. Considering linear
random composites of cylindrical particles with a specific dielectric function,
which varies along the radial direction of the particles, we have studied three
cases of dielectric profiles: exponential function, linear and power-law profiles.
For each case, the effective dielectric response of graded composites is given
on the basis of exact solutions of the local potentials of composites in the dilute
limit. For a larger volume fraction, we have proposed an effective medium
approximation to estimate the effective dielectric response.

1. Introduction

In nature, graded materials, whose properties are graded in space along one direction, are
abundant, for example, bamboo and cells in living systems [1, 2]. The physical properties
of graded materials can be designed for specific needs in engineering by changing their
composition or microstructure [3–6]. For instance, the thermal conductivity,dielectric constant
and electric conductivity can be designed to vary along the radius in a cylindrical or spherical
particle [7, 8]. Recently, Dong et al [9] have developed a first-principles approach to compute
the effective response of graded spherical composites. If the composites contain inclusions of
the graded materials, the effective properties of the graded composite media are very different
from those of the homogeneous medium because of the effect of the gradient function on the
effective response. The formulae of homogeneous composites are not applied to estimate the
response of graded composites [10]. Therefore it is necessary to develop new methods to
investigate the effective response of graded composites under an external applied field.
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In this paper, for the linear constitutive relationship between electric displacement D and
electric field E , D = εE , we have investigated the effective dielectric response of graded
cylindrical composites under an external uniform applied electric field. Considering three
dielectric functions of cylindrical inclusion, εi(r) = eβr , b + cr and ckr k (where, r is the radial
variable of cylindrical inclusion in cylindrical coordinates and β, b, c, ck and k are constants),
we have derived the effective response of the graded cylindrical composites by the effective
medium approximation for each case of the dielectric functions of cylindrical inclusions.

Under a quasi-electrostatic approach, we assume that the corresponding governing
equations are ∇ · D = 0 and ∇ × E = 0. The boundary conditions of the composites
are the continuity of the local potentials of the inclusion particle and the normal components
of the electric displacement at the surface of the inclusion particle. At infinity the potential
must match that of the external applied field.

2. Potentials in graded composites

Let us consider a cylindrical particle with dielectric function, εi(r), embedded in a
homogeneous and isotropic host with dielectric constant εm . The cylindrical particle has
unit radius. If the external electric field Ea = E0 x̂ is applied to the composites along the x̂
direction, in cylindrical coordinates, the differential equations for the potential in the whole
region can be reduced to two dimensions:
1

r

∂

∂r

[
εα(r)r

∂�α(r, φ)

∂r

]
+

1

r

∂

∂φ

[
εα(r)

1

r

∂�α(r, φ)

∂φ

]
= 0, in �α, α = i, m (1)

where the subscripts α = i, m denote the quantities in the inclusion (i) and host (m) regions,
respectively. �i(r, ϕ) and �m(r, ϕ) denote the potentials of the inclusion region and host
region, respectively. �α is the region of the α type material. In the host region, the potential
�m(r, φ) can be derived easily using equation (1) and the boundary condition at infinity:

�m(r, θ) = −(r + Br−1)E0 cos(φ).

For the cylindrical inclusion, using the method of separation of variables, we can express
the general solution of the potential �i (r, φ) in the form

�i (r, θ) =
∞∑

n=0

Rn(r) cos(nφ). (2)

The equation of the radial part, Rn(r), of the potential is governed by equation (3):

1

εi(r)

dεi(r)
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dRn(r)
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+

1

r

∂
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(
r

dRn(r)
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)
− n2

r2
Rn(r) = 0. (3)

Next we will derive the potential in a cylindrical particle with the dielectric function, εi(r),
for the following three cases. Case (A): exponential function εi(r) = eβr . For case (B): linear
profile εi(r) = b + cr . In case (C): power-law profile εi(r) = ckr k .

Case (A). For a cylindrical particle with exponential function εi(r) = eβr , equation (3) is
rewritten in the form

1

r

d

dr

(
r

dRn(r)

dr

)
+ β

dRn(r)

dr
− n2

r2
Rn(r) = 0. (4)

Here, the Frobenius method [11] is applied to solve equation (4). Taking Rn(x) =
r p

∑∞
k=0 an

k r k , and substituting it into equation (4), we have
∞∑

k=0

[p(p − 1) + p − n2]an
k (r/2)k+p +

∞∑
k=0

[2 p(k + 1)an
k+1 + (k + 1)an

k+1 + 2βpan
k ](r/2)k+p+1
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+
∞∑

k=0

[(k + 2)(k + 1)an
k+2 + 2β(k + 1)an

k+1](r/2)k+p+2 = 0. (5)

The characteristic exponent p is determined if we set the coefficients p(p − 1) + p − n2 of the
low power term rk+p to be equal to zero:

p(p − 1) + p − n2 = 0. (6)

From equation (6), we obtain p = n or −n. Thus equation (5) can be simplified to equation (7):

(2 pan
1 + an

1 + 2βpan
0 )(r/2)p+1 +

∞∑
k=0

[2 p(k + 2)an
k+2 + (k + 2)an

k+2 + 2βpan
k+1](r/2)k+p+2

+
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k=0

[(k + 2)(k + 1)an
k+2 + 2β(k + 1)an

k+1](r/2)k+p+2 = 0. (7)

If we set the coefficients of the power series r p+1 and rk+p+2 to be zero in equation (7), we can
obtain the iteration relationships between an

k :

(2 p + 1)an
1 + βpan

0 = 0, (8)

(2 p + k + 2)(k + 2)an
k+2 + β(p + k + 1)an

k+1 = 0. (9)

From equations (8) and (9), we have, respectively,

an
1 = − βp

(2 p + 1)
an

0 (10)

and

an
k+2 = − β(p + k + 1)

(k + 2)(2 p + k + 2)
an

k+1, k = 0, 1, 2, . . . . (11)

Considering equations (10) and (11), we get the general iteration formula

an
k+1 = − β(p + k)

(k + 1)(2 p + k + 1)
an

k , k = 0, 1, 2, . . . (12)

where an
0 is constant. More generally, we set an

0 = 1. Clearly, the series solution is convergent
in the range |r | < ∞.

Hence the general solution of the radial part of the potential is

Rn(r) = Anrn
∞∑

k=0

an
k r k + A−nr−n

∞∑
k=0

a−n
k r k .

Because the potential of the inclusion is finite and constant at the polar point r = 0, we can
determine the valid solution of the radial part, Rn(r) = Anrn

∑∞
k=0 an

k r k . Thus the potential
of the cylinder is

�i (r, θ) =
∞∑

n=0

Anrn

( ∞∑
k=0

an
k r k

)
E0 cos(nφ).

Using the boundary conditions: the continuity of the local potentials and normal
components of the electric displacement at the surface of the inclusion particles, we can
determine the coefficients of the potentials in the host and inclusion regions. The potential in
a cylindrical particle is

�i (r, θ) = A1r E0 cos(φ)

∞∑
k=0

a1
k r k
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where a1
k = (−β)k/(k + 2)!, a1

0 = 1. Considering
∑∞

k=0 (−βr)k+2/(k + 2)! = (e−βr − 1+βr),
the potential of a cylindrical inclusion can be rewritten in the form

�i (r, φ) = A1 cos(φ)E0

rβ2
(e−βr − 1 + βr), r � 1 (13)

where A1 = −2εm/(v1εm + v2eβ) and

v1 = (e−β + β − 1)/β2,

v2 = [1 − e−β(1 + β)]/β2.

In the host region, the potential is

�m(r, θ) = −(r + Br−1)E0 cos(φ), r � 1 (14)

where B = (εmv1 − eβv2)/(εmv1 + eβv2).

Case (B). For the linear profile, εi(r) = b + cr , equation (3) is reduced to equation (15):

d2 Rn(r)

dr2
+

1

ξ + r

dRn(r)

dr
+

1

r

dRn(r)

dr
− n2

r2
Rn(r) = 0. (15)

Taking the variable transformation, Rn(z) = zku(z), r = −ξz, ξ = b/c, we can simplify
equation (15) to the following form:

z2(z − 1)
d2u(z)

dz2
+ [(2k + 2)z − 2k − 1]z

du(z)

dz
+ [(k2 + k − n2)z − k2 + n2]u(z) = 0. (16)

In order to identify the characteristic exponent k, we set −k2 + n2 = 0 (so k = ±n). Then
equation (16) can be transformed into equation (17):

z(z − 1)
d2u(z)

dz2
+ [γ − (α + β + 1)z]

du(z)

dz
− αβu(z) = 0, (17)

where γ = 2k + 1, α + β = 2k + 1, αβ = −n2 + k(k + 1). The solution u(z) of equation (17) is
the hypergeometric function F(α, β, γ, z) [12]. The hypergeometric function is investigated
comprehensively and it is analytic over all complex planes besides its singular points [12].
Therefore the function Rn(r) can be expressed as

Rn(r) = An

(
− r

ξ

)n

F

(
αn, βn,γn,− r

ξ

)
+ A−n

(
− r

ξ

)−n

F

(
α−n, β−n, γ−n,− r

ξ

)
, (18)

where γ±n = ±2n + 1, α±n = [(1 ± 2n) ∓ √
1 + 4n2]/2 and β±n = [(1 ± 2n) ± √

1 + 4n2]/2.
Using the boundary condition on the surface of a cylindrical inclusion and a finite constant

of the potential �i(r, θ) at the polar point r = 0, we determine the coefficients of the potentials
in the host and inclusion regions. So the potentials are

�m(r, θ) = −(r + Dr−1)E0 cos(φ), r � 1,

�i (r, θ) = −A1
r

ξ
F

(
α1, β1, γ1,− r

ξ

)
E0 cos(φ), r < 1,

where

A1 = −2εm/[εmv1 + (b + c)v2],

D = [εmv1 − (b + c)v2]/[εmv1 + (b + c)v2],

v1 = ξ ′ F(α1, β1,γ1, ξ
′),

v2 = ξ ′
[

F(α1, β1, γ1, ξ
′) + ξ ′ α1β1

γ1
F(α1 + 1, β1 + 1, γ1 + 1, ξ ′)

]
,
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ξ ′ = −c/b,

α1 = (3 − √
5)/2,

β1 = (3 +
√

5)/2,

γ1 = 3.

Case (C). For the power-law profile, εi(r) = ckr k, Gu and Yu [13] have given the exact
solutions of potentials in the cylindrical particle and host regions:

�m(r, θ) = (r + D1r−1)E0 cos(φ), r � 1

�i (r, θ) = A1r sk E0 cos(φ), r < 1

where

sk = (
√

k2 + 4 − k)/2,

D1 = (εm − cksk)/(εm + cksk),

A1 = 2εm/(εm + cksk).

3. Effective dielectric response

On the basis of the potential in the inclusion region, we can calculate the effective dielectric
response of the graded composites:

1

V

∫
V

[D − εm E] dv = D̄ − εm Ē, (19)

where V is the volume of the composite media. D̄ and Ē are the volume averages of the electric
displacement and electric field over the whole composite regions, respectively. We define the
effective dielectric response εe as D̄ = εe Ē . Using the relationship D = εm E in the host
region and substituting it into the left-hand side of equation (19), we can rewrite equation (19)
in the form:

1

V

∫
�i

[εi(r) − εm]E dv = (εe − εm)Ē . (20)

In the dilute limit, we can evaluate the effective response of the composite by solving
the electric field of a single particle under an external uniform electric field Ē . In this case,
the effective dielectric response εe can be estimated from equation (20) for the three cases of
dielectric functions by substituting the potentials of the inclusion region into the left-hand side
of equation (20).

Case (A). For the exponential function εi(r) = eβr , in the dilute limit, the effective dielectric
response is

εe/εm = 1 + 2 fi (v3 − εmv4)/(εmv1 + v2eβ), (21)

where fi is the volume fraction of the cylindrical inclusion:

v3 = (eβ − β − 1)/β2,

v4 = (e−β + β − 1)/β2.

Now we demonstrate that, in the dilute limit, equation (21) can be reduced to the classical
formulae by letting β → 0. Taking the following limits, limβ→0 v3/v1 = 1, limβ→0 v4/v1 = 1
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and limβ→0 v2/v1 = 1, we get Maxwell’s formula of the cylindrical particle with the dielectric
constant εi = 1:

εe/εm = 1 + 2 lim
β→0

fi (v3 − εmv4)/(εmv1 + v2eβ) = 1 + 2 fi (1 − εm)/(1 + εm).

Case (B). For the linear profile, εi(r) = b + cr , the effective dielectric response is

εe/εm = 1 + 2 fi [(b − εm)v3 + cv4]/[εmv1 + (b + c)v2], (22)

where fi is the volume fraction of the cylindrical inclusion:

v3 = 2ξ ′[w(1, α1, β1, γ1, ξ
′) − w̃(2, α1, β1, γ1, ξ

′)]

+
α1β1

γ1
(ξ ′)2[w(1, α1 + 1, β1 + 1, γ1 + 1, ξ ′) − 2w(2, α1 + 1, β1 + 1, γ1 + 1, ξ ′)

+ 2w̃(3, α1 + 1, β1 + 1, γ1 + 1, ξ ′)]
v4 = 2ξ ′[w(1, α1, β1, γ1, ξ

′) − 2w(2, α1, β1, γ1, ξ
′) + 2w̃(2, α1, β1, γ1, ξ

′)]

+
α1β1

γ1
(ξ ′)2[w(1, α1 + 1, β1 + 1, γ1 + 1, ξ ′) − 3w(2, α1 + 1, β1 + 1, γ1 + 1, ξ ′)

+ 6w(3, α1 + 1, β1 + 1, γ1 + 1, ξ ′) − 6w̃(4, α1 + 1, β1 + 1, γ1 + 1, ξ ′)]
w̃(n, α, β, γ, ξ ′) = w(n, α, β, γ, ξ ′) − w(n, α, β, γ, 0),

w(n, α, β, γ, z) = (ξ ′)−n F(α − n, β − n, γ − n, z)
n∏

i=1

(γ − i)

(α − i)(β − i)
.

For the case c → 0, the classical Maxwell’s formula of homogeneous composite media
will be obtained for εi = b from equation (22). In this case, we easily obtain the following
limits referencing the hypergeometric function: limc→0 v2/v1 = 1, limc→0 v3/v1 = 1 and
limc→0 v4/v1 = 2/3. Substituting the three limits into equation (23), we have

εe/εm = 1 + lim
c→0

2 fi [(b − εm) v3
v1

+ c v4
v1

]

εm + (b + c) v2
v1

= 1 + 2 fi (b − εm)/(εm + b).

This result is the classical formula of Maxwell’s effective response of cylindrical composites
for εi = b.

Case (C). For the power-law profile, εi(r) = ckr k, we have

εe/εm = 1 + 2 fi (sk + 1)(ck I2 − εm I1)/(εm + cksk), (23)

where fi is the volume fraction of the cylindrical inclusion:

I1 = (sk + 1)−1,

I2 = (sk + k + 1)−1.

For k → 0, the classical Maxwell’s formula is again obtained from equation (23). Letting
k → 0, we have the limits limk→0 sk = 1, limk→0 I1 = 1/2 and limk→0 I2 = 1/2. With
these limits, we have Maxwell’s formula of cylindrical composites with the dielectric constant
εi = c0:

εe/εm = 1 + lim
k→0

2 fi (sk + 1)(ck I2 − εm I1)/(εm + cksk) = 1 + 2 fi (c0 − εm)/(c0 + εm).

Now, we will give an effective medium approximation (EMA) to estimate the effective
dielectric response for a larger volume fraction. In order to estimate the average field Ē
over the whole composite media regions, we consider a sample of cylindrical particles with
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Figure 1. For a cylindrical inclusion with an exponential dielectric function, εi (r) = eβr , the
effective response contrast εe/εm is plotted against the parameter β for a volume fraction f = 0.05
and 0.1.

the unknown effective dielectric response εe and embed it in a host medium with dielectric
constant εm . The external field Ea = E0 x̂ is applied to the new composite media along the x̂
direction. Thus, as an EMA, we can regard the average field over the sample cylindrical region
as that of the whole original composite media region. In this case, we can get [14]

Ē = 2εm Ea/(εe + εm). (24)

Substituting equation (24) into the right-hand side of equation (20), we obtain new
effective dielectric responses for the three cases of cylindrical composites. The formulae
are approximately suitable for a larger volume fraction compared with the dilute limit
formulae (21)–(23). Here we should note that our EMA method does not consider exactly
the effects of the neighbouring inclusions on the local electric field around each particle. In the
present case, our formulae are only valid for low concentrations and the concentration limit
is less than 0.1. For high concentrations, Tuncer and others have investigated the effects of
neighbouring particles on the effective dielectric response [15, 16].

Case (A). In the case of the exponential function εi(r) = eβr , for a larger volume fraction,
we have

εe/εm = 1 + 2 fi A1(εmv4 − v3)/[2εm − fi A1(εmv4 − v3)]. (25)

Case (B). For the linear profile, εi(r) = b + cr , we have

εe/εm = 1 + 2 fi [(b − εm)v3 + cv4]/[εmv1 + (b + c)v2 − fi ((b − εm)v3 + cv4)]. (26)

Case (C). For the power-law profile, εi(r) = ckr k, at a larger volume fraction, we have

εe/εm = 1 + fi (sk + 1)(ck I2 − εm I1)/[εm + cksk − fi (sk + 1)(ck I2 − εm I1)]. (27)

In discussion, we should note that, for lower concentrations of inclusions, equations (25)–
(27) can be exactly reduced to the dilute limit formulae (21)–(23), respectively, if we remain
at the first power of the volume fraction fi . It is instructive to show the effects of the
gradient parameters of dielectric functions on the effective responses of composites by means
of equations (25)–(27). In figure 1, we plot the effective dielectric response of cylindrical
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Figure 2. For the linear dielectric profile εi (r) = b + cr of a cylindrical inclusion, the effective
response εe/εm is plotted against the contrast parameter b/c at a volume fraction f = 0.05 and 0.1.

Figure 3. For the power-law profile εi (r) = ckrk of a cylindrical inclusion, at a volume fraction
f = 0.05 and 0.1, the effective response contrast εe/εm is plotted against the parameter k for
ck = 1.

composites with exponential dielectric profile εi(r) = eβr versus the parameter β. Clearly,
the effective response εe/εm increases as the parameter β increases. For the linear dielectric
function εi(r) = b + cr , a similar conclusion is obtained from figure 2. The effective response
contrast εe/εm increases as the ratio b/c increases. For both dielectric function profiles, it is
attributed to the fact that the dielectric constants of inclusions increase when the parameters β

and b/c increase, respectively. In figure 3, the effective response is plotted against the power-
law parameter k. In contrast to parameters β and b/c, the effective response decreases as the
parameter k increases.
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4. Conclusions

The effective dielectric response of linear random composites with graded cylindrical material
is investigated. We have exactly derived the local potentials of cylindrical composites for the
exponential and linear dielectric functions. On the basis of the potentials in the inclusion region,
in the dilute limit, the formulae of the effective dielectric responses are derived for three cases
of the exponential, linear and power-law dielectric functions. Furthermore, for a larger volume
fraction of inclusion, an EMA is given to estimate the effective response. In fact, for spherical
composites with exponential, linear and power-law dielectric functions changing along its
radial direction, our method can be used to deal with them. In addition, using our results for
the three graded cylindrical composites, we can extend them to treat the effective response
of Kerr-like weakly non-linear composites if the linear and non-linear dielectric responses of
inclusions are functions (exponential function, linear and power-law profile in this paper) and
constants, respectively, by means of the perturbation approach [17]. For other complicated
gradient functions of the dielectric constant of the inclusion,one should use numerical methods,
such as the finite element method [16, 18] or boundary-integral equations [19], to tackle it so
that the effective response of the graded composites can be used to improve engineering designs
and applications [20].

Acknowledgments

The authors are grateful to Professor G Q Gu for his useful discussion of this work. This work
was support by National ‘863’ Project of China under grant no. 2002AA639270 and NSFC
no. 10374026. EBW thanks the support of the Innovated Project of Institute of Oceanology of
Chinese Academy of Sciences. JBS thanks the support of the 100-Talent Project of Chinese
Academy of Sciences.

References

[1] Amada S 1995 MRS Bull. 20 35
[2] Holt J B, Koizumi M, Hirai T and Munir Z A 1993 Ceramic Transaction: Functionally Graded Material vol 34

(Westerville, OH: The American Ceramic Society)
[3] Watanabe R 1995 MRS Bull. 20 32
[4] Rabin B H, Williamson and Suresh S 1995 MRS Bull. 20 37
[5] Erdogan F, Kaya A C and Joseph P E 1991 J. Appl. Mech. 58 410
[6] Parameswaran V and Shukla A 2000 J. Mater. Sci. 35 21
[7] Park C W 2000 Indust. Eng. Chem. Res. 39 79
[8] Manhart P K and Blankenbecler R 1997 Opt. Eng. 36 1607
[9] Dong L, Gu G Q and Yu K W 2003 Phys. Rev. B 67 224205

[10] Maxwell J C 1873 Electricity and Magnetism 1st edn (New York: Oxford University Press) p 365
[11] Bender C M and Orszag S A 1978 Advanced Mathematical Methods for Sciences and Engineers (New York:

McGraw-Hill)
[12] Bailey W N (ed) 1935 Generalized Hypergeometric Series (Cambridge: Cambridge University Press)
[13] Gu G Q and Yu K W 2003 J. Appl. Phys. 94 3376
[14] Landau L D and Lifshitz E M 1960 Electrodynamics of Continuous Medium vol 8 (Oxford: Pergamon)
[15] Tuncer E, Serdyuk Y V and Gubanski S M 2002 IEEE Trans. Dielectr. Electr. Insul. 9 809
[16] Tuncer E, Nettelblad B and Gubanski S M 2002 J. Appl. Phys. 92 4612
[17] Gu G Q and Yu K W 1992 Phys. Rev. B 46 4502
[18] Tuncer E, Gubanski S M and Nettelblad B 2001 J. Appl. Phys. 89 8092
[19] Brosseau C and Beroual A 2003 Prog. Mater. Sci. 48 373
[20] Bishop A et al 1993 J. Mater. Sci. Lett. 12 1516


